Renewable Energy Projects

21st Jul 2011 JICA Expert Team Ai Kawamura

Contents

- 1. How Emission Reduction is Achieved by RE Project
- 2. Potential and Policy Target of RE Project
- 3. Basic Formula for Emission Reduction Calculation of RE Project
- 4. Important Factors of RE Projects
- 5. Summary

1. How emission reduction is achieved by RE Project (1)

CO2 is emitted by combustion of fossil fuels

RE reduces GHG emissions by reducing the use of fossil fuel.

1. How emission reduction is achieved by RE Project (3) (Renewable Energy Sources)

- Non-biomass:
 - Wind
 - Hydro
 - Solar
 - Others (geothermal & wave etc)
- Biomass:
 - Residue biomass (wood residue, rice husk, bagasse & garbage etc)
 - Energy crops (gliricidia, jatropha etc)

1. How emission reduction is achieved by RE Project (4)

1. How emission reduction is achieved by RE Project (5)

Project emissions, leakage emissions associated to project activities must be considered as CO2 emissions such as:

- Project emissions associated to fossil fuel use (Fossil fuel & Electricity)
- Leakage emissions associated to biomass utilization
 - a. Leakage emissions associated to land use change
 - b. Leakage emissions associated to biomass production (chemical fertilizer use/vehicle use)
 - c. Leakage emissions associated to biomass competition

a. Leakage emissions associated to land use change

availability within the collection boundary is more than 125% of the biomass demand, leakage does not need to be considered.

2. Potential and Policy Target of RE Project (1)

• Usage of RE energy

Electricity	Grid-connection, On site (by the user)
Thermal	Onsite (by the user)
Liquid fuel	(mainly for vehicle)

• RE sources and types of energy use

Source	Electricity	Heat	Liquid fuel
Biomass	\checkmark	\checkmark	✓ (plant oil)
Hydro/Wind	\checkmark		
Solar	\checkmark	\checkmark	

2. Potential and Policy Target of RE Project (3)

• Policy Targets by SEA (electricity)

Yr	Conventional Hydrolytic	Maximum from Oil	Coal	Minimum from NCRE
1995	94%	6%	-	-
2000	45%	54%	-	1%
2005	36%	61%	-	3%
2010	42%	31%	20%	7%
2015	28%	8%	54%	10%

NCRE: non-conventional renewable energy

Cumulative Renewable Energy Capacity Additions (MW)

Year	Biomass	Hydro	Wind	Other	Total	%Energy	
2007	1	119	3		123	4	
2008	11	155	3		169	4.5	
2009	15	165	14		194	4.7	
2010	15	200	34	1	250	6.4	
2011	20	225	34	1	280	6.8	
2012	20	280	35	1	336	9.1	
2013	20	295	85	2	402	9.8	
2014	30	310	85	2	427	9.9	Sou
2015	40	330	85	5	460	10	(M/

Source: (M/P&E, 2008)

10

2. Potential and Policy Target of RE Project (4)

• Purchasing tariff for NCRE by CEB

Technology	All inclusive rate for years 1-20
Mini-hydro	13.04 (LKR/kWh)
Mini-hydro – Local	13.32 (LKR/kWh)
Wind	19.43 (LKR/kWh)
Wind - Local	19.97 (LKR/kWh)
Biomass (Dendro)	20.70 (LKR/kWh)
Biomass (Agricultural & Industrial Waste)	14.53 (LKR/kWh)
Municipal Waste	22.02 (LKR/kWh)
Waste Heat Recovery	6.64 (LKR/kWh)

The Government has also recognised the need to elevate biomass as both a commercial crop as well as the third fuel option for electricity generation and has accordingly declared *Gliricedia sepium* as the fourth plantation crop after tea, rubber and coconut in 2005. Biofuels as an important constituent of the transport energy will be developed to take a 20 % share by 2020. (by SEA Website)

3. Basic Formula for Emission Reduction Calculation of RE project (1)

3. Basic Formula for Emission Reduction Calculation of RE project (2)

3. Basic Formula for Emission Reduction Calculation of RE project (3)

Reference: "Tool to calculate the emission factor for an electricity system"

- Grid Emission Factor is necessary for:
 - Renewable energy project that displaces grid electricity
 - Energy efficiency projects that reduces the use of the grid electricity
 - Projects using grid electricity in the project scenario (project emissions)
- Currently, all the registered Sri Lankan CDM projects requires grid emission factor data.
- Grid Emission Factor: 0.65~0.73 tCO2/MWh (National official figure is under preparation, Currently, PP has to calculate by themselves)

3. Basic Formula for Emission Reduction Calculation of RE project (5)

Terminology	Explanation
Operating Margin (OM)	Emission factor that refers to the group of existing power plants whose current electricity generation would be affected by the proposed CDM project activity.
Built Margin (BM)	Emission factor of the group of prospective power plants whose construction and future operation would be affected by the proposed CDM project activity.
Combined Margin (CM)	Weighted average of OM & BM of the electricity system.
Low-cost/must-run resources	Power plants with low marginal generation costs or power plants that are dispatched independently of the daily or seasonal load of the grid.

BM

The set of power capacity additions in the electricity system that comprise 20% of the system generation (MWh) and that have been built most recently

The set of 5 power units that have been built most recently

3. Basic Formula for Emission Reduction Calculation of RE project (6)

• Applicable CDM Approved Methodology for RE projects

Category	Number	Title
Electricity	AM0019	Renewable energy project activities replacing part of the electricity production of one single fossil-fuel-fired power plant that stands alone or supplies electricity to a grid, excluding biomass projects
Electricity	AM0042	Grid-connected electricity generation using biomass from newly developed dedicated plantations
Electricity	ACM0002	Consolidated baseline methodology for grid-connected electricity generation from renewable sources
Electricity/ Thermal	ACM0006	Consolidated methodology for electricity and heat generation from biomass residues
Liquid fuel	ACM0017	Production of biodiesel for use as fuel
Electricity	ACM0018	Consolidated methodology for electricity generation from biomass residues in power-only plants

3. Basic Formula for Emission Reduction Calculation of RE project (7)

• Applicable Approved CDM Methodology for RE projects (Small Scale Methodology)

Category	No	Title
Electricity	I-A	Electricity generation by the user
	I-B	Mechanical energy for the user with or without electrical energy
Electricity	I-D	Grid connected renewable electricity generation
Electricity	I-F	Renewable electricity generation for captive use and mini-grid
Thermal/ Cogeneration	I-C	Thermal energy production with or without electricity
Thermal	I-E	Switch from non-renewable biomass for thermal applications by the user
Thermal	I-I	Biogas/biomass thermal applications for households/small users
Liquid fuel	I-G	Plant oil production and use for energy generation in stationary applications
Liquid fuel	I-H	Biodiesel production and use for energy generation in stationary applications
Liquid fuel	III-T	Plant oil production and use for transport applications

5. Important Factors of RE Projects (1) Non-Biomass

Project type	Important Factors for Project Planning	Risks (Manageable/Unmanageable)
Common	 Distance to national grid connecting point /users Land ownership/tenure 	Natural disastersTariff policy/policy/trend
Hydro	 Seasonal fluctuation of river flow Units composition Land tenure (relocation, fishery right, water concession, impacts on down stream stakeholders) 	• Natural disasters (drought, land slide)
Wind	Wind intensityWind fluctuationArrangement of windmills	• Natural disasters (lightning)
Solar	Hours of sunshineSunshine intensityElectricity or heat	• Theft

5. Important Factors of RE Projects (2) Biomass

Process	Important Factors for Project Planning	Risks (Manageable/Unmanageable)
Biomass Procurement	 Enough amount of biomass should be assured (seasonal fluctuation) Procurement cost: distance of transport, purchasing price (market fluctuation) Each location of generation source(s), conversion site, national grid connecting point / users 	 Fluctuation of the biomass market value Lack of supply due to climate conditions Natural factors (drought, extreme whether)
Conversion	 Advantage and disadvantage of technology options (direct combustion, gasification, gas engine/turbine, steam generation, boiler) Pre-treatment of biomass (water content) 	
Utilization	•In case of grid connection, larger scale may have advantage if enough biomass with reasonable price is assured (scale merit)	• Tariff policy/policy/trend

Summary

- Sri Lankan Government promotes RE utilization and business potential of renewable energy is high in Sri Lanka.
- RE basically contributes to reduce GHG emissions. There are opportunities to attain carbon credit through CDM or other mechanisms.
- For biomass project, project / leakage emissions need to be considered (Even if the project does not aim to obtain carbon credit, high emission project is considered less beneficial).
- Natural conditions are very important to assess feasibility of RE projects, but land issues and policy trend are also significant factors.
- For biomass CDM project, stable raw material supply is one of the most significant factors (price fluctuation, own plantation).

Thank you for your attention!